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We determine solutions of the Euler equation representing isolated vortices (monopoles,
dipoles) in an infinite domain, for arbitrary values of energy, circulation, angular mo-
mentum and impulse. A linear relationship between vorticity and stream function is
assumed inside the vortex (while the flow is irrotational outside). The emergence of
these solutions in a turbulent flow is justified by the statistical mechanics of continuous
vorticity fields. The additional restriction of mixing to a ‘maximum-entropy bubble’,
due to kinetic constraints, is assumed. The linear relationship between vorticity and
stream function is obtained from the statistical theory in the limit of strong mixing
(when constraints are weak). In this limit, maximizing entropy becomes equivalent to
a kind of enstrophy minimization. New stability criteria are investigated and imply
in particular that, in most cases, the vorticity must be continuous (or slightly discon-
tinuous) at the vortex boundary. Then, the vortex radius is automatically determined
by the integral constraints and we can obtain a classification of isolated vortices
such as monopoles and dipoles (rotating or translating) in terms of a single control
parameter. This article generalizes the classification obtained in a bounded domain
by Chavanis & Sommeria (1996).

1. Introduction
The formation of organized vortices is an intriguing phenomenon in two-dimensional

turbulence. It has been observed in many numerical simulations of two-dimensional
turbulence, as first emphasized and investigated by McWilliams (1984). It is also
observed in laboratory experiments (Flierl, Stern & Whitehead 1983; Couder & Bas-
devant 1986; Nguyen duc & Sommeria 1988; van Heijst & Flor 1989) and in the
atmospheres or oceans (see e.g. Stern 1975; Flierl 1987). Different structures have
been observed, which can be classified as axisymmetric monopoles and rotating or
translating dipoles (involving both positive and negative vorticity). Tripolar vortices
have been also observed (van Heijst, Kloosterziel & Williams 1991; Carton, Flierl
& Polvani 1989; Carton & Legras 1994), but are less common. These structures
spontaneously emerge and coexist in two-dimensional turbulence (Legras, Santangelo
& Benzi 1988).

Explaining this self-organization and predicting the resulting flow structure is a
challenging problem. The statistical mechanics of the Euler equation (Kuz’min 1982;
Miller 1990; Robert 1990; Robert & Sommeria 1991) provides a general framework to
tackle this problem. It can be considered as a generalization to continuous vorticity
fields of the point-vortex statistical mechanics introduced by Onsager (1949) and
developed by Joyce & Montgomery (1973) with the mean field approximation. This
theory predicts a statistical equilibrium, which is the most probable outcome of
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a complex stirring, with constraints due to the conserved quantities of the system
(these are the energy and successive moments of the vorticity probability distribution,
and for appropriate geometries, the impulse and angular momentum). A similar
statistical theory has been proposed by Lynden-Bell (1967) to justify the observed
density profile of collisionless stellar systems (described by the Vlasov equation). This
analogy is discussed in detail by Chavanis, Sommeria & Robert (1996).

Various equilibrium structures can be obtained, which generally depend on the
shape of the fluid domain. However when the initial field of vorticity ω0(r) is purely
positive (or purely negative) isolated vorticity structures (monopoles) are predicted
(Lundgren & Pointin 1977), with exponential or power-law vorticity decay at large
distances. This self-confinement is due to the conservation of energy, which restricts
vorticity spreading.

In contrast, when ω0(r) has both positive and negative values, the formation of
isolated structures (in particular dipoles and tripoles) cannot be explained as a global
equilibrium: an additional hypothesis of vorticity confinement in a subdomain† must
be assumed (Sommeria 1994). In fact, even in the case of monopoles, the final states
resulting from direct numerical simulations (Sommeria, Staquet & Robert 1991) have
a more confined vorticity than the predicted global equilibrium. The fit with the
statistical theory appears to be excellent only in a core region, containing most of
the vorticity. Some vorticity filaments escape this core region, and wrap around it,
forming a halo, but vorticity sharply drops to zero beyond this halo.

This confinement can be justified in the framework of the statistical theory by
considering kinetic effects. An evolution equation describing the relaxation towards
equilibrium is then used (Robert & Rosier 1997). Indeed the relaxation toward
equilibrium is due to eddy fluxes associated with local vorticity fluctuations. As these
fluctuations vanish at the contact with the unmixed flow, the eddy flux also vanishes
and this results in a confinement of the vorticity. In addition, the vortex boundary
undergoes strong strain and vorticity filaments are stretched towards finer and finer
scales, which further reduces the eddy fluxes. On the basis of these ideas, Robert &
Rosier (1997) have obtained a self-organization into dipoles or tripoles, in excellent
agreement with direct numerical simulations of slightly viscous flows.

However, the final state is then obtained by solving an evolution equation from
a particular initial condition. To reach a more general understanding of the self-
organization, we seek here a prediction in terms of a restricted equilibrium state: we
idealize the behaviour of the system by assuming that after some mixing with the
surrounding fluid, vorticity remains trapped and well stirred inside a bubble, with a
given area and a deformable boundary. We are led therefore to our basic assumption:
the system eventually organizes into a state of maximum entropy, with the constraints
of the conserved quantities, and an additional (kinetic) constraint of a given bubble
area. The shape and position of the bubble, as well as the vorticity structure inside
the bubble, then result from entropy maximization.

This principle is precisely stated in § 2.1. It leads (in § 2.2) to a well-defined relation-

† There is a similar, and even more crucial, problem in the case of stellar systems. Indeed an
unbounded isothermal sphere would have an infinite mass. This means that statistical equilibrium
cannot exist in the whole space, and is necessarily restricted to some bounded region. The observation
of elliptical galaxies or globular clusters confirm this point (see e.g Hjorth & Madsen 1991). For
negative individual energies (corresponding to tightly bound stars) the distribution function is
exponential, in agreement with statistical equilibrium. However, close to the escape energy, the
distribution function decreases more rapidly (as a power law) and for higher energies the stars
escape to infinity and the distribution function sharply drops to zero.
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ship between vorticity and stream function which determines the equilibrium state,
just like in a bounded domain. The novel aspect is that the boundary condition is
not given by an impermeability condition at the wall, but rather by an appropriate
matching with the surrounding irrotational flow (§ 2.3). When it is not axisymmetric,
the equilibrium vorticity structure moves with a steady velocity, of rotation or trans-
lation, and the conserved quantities are expressed (in § 2.4) as integral constraints
in the frame of reference moving with the vorticity structure. The determination of
the equilibrium state from an arbitrary initial condition is therefore a well-defined
problem, provided we introduce a single free parameter, the area achieved by the
bubble, which characterizes the kinetic restriction to mixing. We shall see by the study
of the second-order variations (§§ 2.5 and 3.5) that this area is, in fact, constrained to
a narrow range, beyond which there is no entropy maximum. In this case, we expect
the vortex boundary to deform irreversibly, absorbing surrounding fluid, or split into
several bubbles, until a suitable area is reached. Therefore, the prediction of the flow
organization from an initial state will turn out to be very selective. This selection will
yield solutions with continuous (or weakly discontinuous) vorticity at the boundary,
a condition not assumed a priori.

In a bounded domain, a general algorithm for determining the maximum-entropy
state has been developed by Whitaker & Turkington (1994). The generalization
to the case of a maximum-entropy bubble would require specific developments. To
proceed further with analytical tools, we suppose instead that the relationship between
vorticity and stream function is linear. This particular case of statistical equilibrium
is not uncommon, as discussed by Chavanis & Sommeria (1996) for a bounded
domain. It can be reached for any value of the circulation (first vorticity moment),
enstrophy (second vorticity moment), impulse, angular momentum and energy, if
the initial condition has the appropriate set of higher-order vorticity moments. With
this restriction, we obtain in § 3 an explicit classification of isolated equilibrium
structures, involving monopoles, and asymmetric or symmetric dipoles. Remarkably,
their selection depends on the conserved quantities only through a single control
parameter.

These structures are well-known as particular solutions to the Euler equations
(Chaplygin 1902; Lamb 1932; see also Meleshko & van Heijst 1994 for a review).
A novelty of our work is to determine which solutions correspond to any given
values of the constants of motion. This result, derived in §§ 3.1–3.4, can be used
independently of the statistical mechanics formalism developed in § 2. This formalism
however provides a justification of their emergence from an initial turbulent state.
Furthermore, the condition of maximum entropy imposes a severe selection among
these steady solutions, as discussed in § 2.4. The derivation of these stability conditions
requires a lengthy analysis of the second-order entropy variations, postponed to § 3.5.

In the linearized limit developed in § 3, the entropy maximization becomes equiv-
alent to a minimum-enstrophy principle. We discuss this link in § 4, comparing our
results with the approach of Leith (1984).

2. The maximum-entropy bubble
2.1. Basic assumptions and notation

We consider some initial patch of non-zero vorticity, occupying a domain (D0) with
area |D0|, surrounded by irrotational fluid in the infinite plane. The Euler equations
are known to develop very complex vorticity filaments, so that this patch is expected
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to mix with the surrounding fluid, and to form a mixture filling a new domain
(D). We shall be interested in a coarse-grained description of the vorticity field,
with a statistical representation of the unresolved vorticity fluctuations. Accordingly,
the domain (D) must be viewed as a ‘smooth’ enclosure of the patch with non-zero
vorticity. The area |D| > |D0| is supposed prescribed because of kinetic restrictions on
mixing. However, the shape of this domain is free to vary by large-scale deformation
and will be determined by entropy maximization. We assume for simplicity that
all the vorticity remains in a single connected bubble. We shall find that statistical
equilibrium is not always possible, suggesting in that case an organization into several
bubbles. This situation could be analysed by similar methods, but we shall leave it
for future work.

The initial vorticity patch is not necessarily uniform, and contains a distribution
γ(σ) of vorticity levels σ, that is γ(σ) dσ is the area occupied by vorticity values
between σ and σ + dσ. This area is conserved in time during the mixing process, a
consequence of the Euler equation. The global distribution of vorticity levels in the
new domain (D) is then equal to the initial one, except for the level σ = 0 as an area
|D|− |D0| of surrounding irrotational fluid has been incorporated and mixed into the
new domain. The resulting distribution in (D) is then γD(σ) = γ(σ) + (|D| − |D0|)δ(σ)
(where δ is the Dirac distribution). In addition to the total area of each vorticity level,
the energy E is also conserved in the process, as well as the angular momentum L
and the two components of the impulse P .

We describe the mixing process using the formalism developed by Robert &
Sommeria (1991), with presentation and notation similar to that of Chavanis &
Sommeria (1996): a macroscopic (coarse-grained) state is defined by the probability
ρ(ro, σ) of finding the vorticity level σ in a small neighbourhood of the position ro.
The normalization condition yields, at each point,∫

ρ(ro, σ)dσ = 1. (2.1)

According to our hypothesis, this probability vanishes outside the domain (D) for all
σ 6= 0, so that ρ(ro, σ) = δ(σ) outside (D). The probability ρ can be physically defined
by setting a resolution scale ε. In an elementary cell (with area ε2), the probability
ρ(ro, σ)dσ is the area proportion with vorticity in the interval [σ, σ+ dσ]. For an ideal
fluid, vorticity contours tend to become more and more finely intertwined as time
goes on (this is the most likely outcome of random stirring), so that a good statistical
sampling is expected for any given resolution ε. The probability ρ is then defined for
an infinitesimal resolution ε.

In practice we expect that weak viscosity effects eventually smooth out the local
vorticity fluctuations, while preserving the locally averaged field of vorticity, expressed
in terms of the probability density as

ω(ro) =

∫
ρ(ro, σ)σdσ. (2.2)

However, we do not need to invoke any viscous effect, and prefer to restrict the
theoretical description to an ideal fluid. Then, fine-scale vorticity fluctuations ω̃,
of the same order as the local average ω, persist at statistical equilibrium but at
infinitesimal scales smaller than a resolution mesh ε. The velocity field associated
with ω is essentially smooth and is derived from the stream function ψ satisfying

ω = −∆ψ. (2.3)
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Local fluctuations of the stream function ψ̃ ∼ ε2ω̃ can be neglected. The Poisson
equation (2.3) determines ψ if we specify its asymptotic behaviour at large distance.
It is dominated by the monopolar term in the expansion of the Biot & Savart law,
hence for ro → +∞

ψ ∼ − Γ
2π

ln ro. (2.4)

In fact, we are free to introduce an additional constant in this expansion, but we set
it to zero. Accordingly, for a given vorticity field ω, (2.3) and (2.4) define the stream
function unambiguously.

It is then possible to express the conserved quantities as integrals of the macroscopic
fields. These are the global probability distribution of vorticity in (D)

γD(σ) =

∫
D
ρ(ro, σ)d2ro, (2.5)

the energy of the flow

E =
1

2

∫
ωψd2ro, (2.6)

the angular momentum

L =

∫
ωr2

od
2ro, (2.7)

and the two components of the impulse

P =

∫
ro ∧ iz ωd2ro, (2.8)

where iz is a unit vector normal to the plane of the flow. These three integrals (2.6)–
(2.8) can be restricted to the subdomain (D), as they involve a quantity proportional
to the vorticity, which vanishes outside (D). Note also that in writing (2.6) we have
neglegted the ‘internal’ energy ω̃ψ̃, of order ε2ω2, much smaller than ωψ, of order
L2ω2 (see also Robert & Sommeria 1991).

The conservation of the global probability density distribution γD implies the
conservation of all the vorticity moments, including the circulation Γ and the fine-
grained enstrophy Γ2:

Γ ≡
∫
γD(σ)σdσ =

∫
ω(ro)d

2ro, (2.9)

Γ2 ≡
∫
γD(σ)σ2dσ =

∫
ω2(ro)d

2ro, (2.10)

where ω2(ro) =
∫
ρ(ro, σ)σ2dσ. Notice that Γ2 has to be distinguished from the

coarse-grained enstrophy

Γ
c.g.
2 ≡

∫
ω2(ro)d

2ro (2.11)

which is not conserved (we have always Γ c.g.
2 6 Γ2).

Notice also that the impulse and the angular momentum have been defined from
a given arbitrary coordinate origin O. When Γ 6= 0, a natural origin is the centre of
vorticity, from which P = 0. The conservation of the impulse then implies that the
centre of vorticity does not move. When Γ = 0, the impulse P is independent of the
origin and the centre of vorticity is rejected at infinity.

After sufficient time (and random evolution), the system has an overwhelming
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probability of achieving a statistical equilibrium obtained by maximizing the mixing
entropy

S = −
∫
ρ(ro, σ) ln ρ(ro, σ)d2rodσ (2.12)

with the constraints (2.5)–(2.8) associated with the conservation laws, and with the
additional constraint of given area |D| (due to kinetic restrictions to mixing). The
shape of the subdomain (D) is free in the maximization process, as well as the
probability fields ρ(ro, σ) inside (D). The entropy expression (2.12) can be obtained
as the logarithm of the ‘number’ of possible vorticity configurations associated with
the considered macroscopic state. In fact an overwhelming majority of these config-
urations corresponds to the statistical equilibrium, justifying that it is likely to be
reached after complex evolution. This concentration property is at the origin of the
predictive power of statistical mechanics in general, and has been proved by Robert
(1991) in the case of vorticity fields. The ‘counting’ of the vorticity configurations
relies on a regular discretization of space, which can be justified from the dynamics by
an invariance theorem, a weak form of the Liouville theorem used in usual statistical
mechanics (see the end of § 2.3).

To calculate equilibrium states, it will be useful to deal with dimensionless quantities,
introducing a unit of length |D0|1/2 and a unit of time (|D0|/Γ2)

1/2. This is equivalent
to making |D0| = Γ2 = 1 and we will take this convention in the following.

2.2. First-order variations

To take into account the constraints on the entropy maximization, we introduce
Lagrange multipliers, so that the first variations satisfy

δS − β̃δE −
∫
α̃(σ)δγD(σ)dσ −

∫
ζ̃(ro)δ

(∫
ρ(ro, σ)dσ

)
d2ro − β̃

Ω

2
δL+ β̃V δP = 0

(2.13)

where β̃ is the inverse temperature, α̃(σ) the ‘chemical potential’ of species σ, Ω will be
later interpreted as the angular velocity of the subdomain (D) and V its translational
velocity. The Lagrange multiplier ζ̃(ro) takes into account the normalization constraint
(2.1). It will be useful in the following to work in terms of a ‘free energy’ defined by:

J = S − β̃E −
∫
α̃(σ)γD(σ)dσ −

∫
ζ̃(ro)ρ(ro, σ)dσd2ro − β̃

Ω

2
L+ β̃VP . (2.14)

Then, the optimal state can be considered either as a critical point of the entropy
for any perturbations conserving the constraints (2.1), (2.5)–(2.8) or equivalently, as a
critical point of the free energy (δJ = 0) for any unconstrained perturbations.

As a result of (2.13), the optimal probability density ρ(ro, σ) in a given domain (D)
is related to the macroscopic stream function ψ by the relationship (see Robert &
Sommeria 1991)

ρ(ro, σ) =
1

Z
g(σ)e−β̃σψ

′
(2.15)

where

ψ′ ≡ ψ + 1
2
Ωr2

o − (V ∧ ro)z + B. (2.16)

B is a constant which will be specified later, g(σ) ≡ e−α̃(σ)+β̃σB and Z ≡ eζ̃(ro)+1. The
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normalization condition (2.1) determines the partition function:

Z =

∫
g(σ)e−β̃σψ

′
dσ, (2.17)

and the locally averaged vorticity (2.2) is expressed in (D) by

ω = fβ̃,g(ψ
′) (2.18)

where

fβ̃,g(ψ
′) ≡

∫
σg(σ)e−β̃σψ

′
dσ∫

g(σ)e−β̃σψ
′
dσ

. (2.19)

This function is always increasing when β̃ < 0 and decreasing when β̃ > 0, as shown
by Robert & Sommeria (1991). It is therefore invertible, so that ψ′ is also a function
of ω (except in the degenerate case β̃ = 0 for which fβ̃,g is a constant). Notice finally
that the function fβ̃,g(ψ

′) tends to the extremal values σmin and σmax of the vorticity
levels when ψ′ → ±∞; in general, however, these bounds are not reached in the flow,
as the vorticity σmin or σmax is locally mixed to some extent with the other vorticity
levels.

The stream function ψ′ describes the flow in a translating or rotating frame of
reference (R′), in which the vorticity is

ω′ = ω − 2Ω. (2.20)

According to (2.18), the relative vorticity ω′ is a function of ψ′, so that the flow is
stationary in the moving frame (R′). This flow is a solution of the equation

−∆ψ = fβ̃,g(ψ
′) (2.21)

obtained by stating that the stream function in (2.18) is produced by the vorticity
distribution itself, according to (2.3).

2.3. Vorticity confinement and matching with the irrotational background

To determine the equilibrium stream function ψ as a solution of (2.21), we need a
boundary condition. In the case of a fixed bounded domain, it is just the impermeabil-
ity condition ψ = 0 at the walls. In the infinite domain, the first idea is to use instead
the asymptotic condition (2.4), which is quite possible when the vorticity levels σ are
limited to a single sign. In that case global equilibria are obtained as solutions of
(2.21), decaying exponentially or with a power law at large distance. Such equilibria
are axisymmetric, as studied by Lundgren & Pointin (1977), or Chorin (1994), with
point vortex statistics, and are similarly obtained for vortex patches (Sommeria 1994).
In this case, vorticity spreading, always favourable for entropy increase, is restricted
by the constraint of energy conservation, hence resulting in a self-confined global
equilibrium.

However this not possible in general when the vorticity levels have values between
σmin < 0 and σmax > 0. Indeed the relative stream function behaves at large distance
like ψ′ ∼ −(Γ/2π) ln ro+ 1

2
Ωr2

o− (V ∧ro)z . This expression tends to +∞ or −∞, except
in the particular case Γ = Ω = V = 0. In this case, monopolar and dipolar solutions
of (2.21) have been obtained by Pasmanter (1994) (but it is not clear whether they
are true entropy maxima). Otherwise, the function fβ̃,g has an infinite argument at
large distance and tends to one of its bounds σmin and σmax. Hence the vorticity does
not tend to zero, in contradiction with the hypothesis of a confined structure.
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Therefore, global equilibria may exist only for structures involving purely positive
(or purely negative) vorticity levels. However, even in these cases, direct numerical
simulations indicate that the vorticity is more confined than expected (Sommeria
et al. 1991). This is why we seek a restricted equilibrium with vorticity confined
to a subdomain (D), with probabilitites dropping discontinuously to zero at the
boundary of (D). We may try to justify this structure as a global statistical equilib-
rium which is not continuous. However, a simple calculation indicates that a local
smoothing of the discontinuity, leading to a probability drop over a distance ε,
will lead to an increase of entropy of order ε. In contrast, the integral constraints
(like the energy) are changing only to order ε2, so they are not able to prevent
the smoothing (the term β̃δE is not able to balance δS in the variation of free
energy, except in the particular limit |β̃| → ∞, obtained for a vorticity patch with
an extremal energy, which cannot mix at all, and remains unchanged at equilibrium;
see for instance figure 1 of Chavanis & Sommeria (1996)). Therefore we assume
that mixing at the edge of (D) is prevented by an additional constraint (of ki-
netic origin), acting like a membrane, which preserves the area of (D), but is freely
deformable.

The equilibrium flow inside (D) is then a solution of (2.21), but we now need
a boundary condition. It is clear that in the moving frame of reference (R′), the
boundary (∂D) must be a streamline, otherwise the vorticity would be advected
outside the domain and the flow would not be stationary anymore. This implies that
ψ′ is necessarily constant on (∂D). We have obtained this criterion by a dynamical
argument, but it also results directly from the condition that the entropy must be
maximum with respect to small deformations of the domain shape. We now justify this
result with simple arguments (and will derive it more rigorously in § 2.5, considering
also the second variations of the entropy).

As a particular deformation, we take a fluid particle somewhere at the boundary
of the subdomain (on the inner side), and put it elsewhere on the boundary (on the
outer side). During this displacement, we conserve the value ω of the fluid particle, as
well as its local probability distribution. Therefore the constraints on γD(σ) and the
normalization condition are satisfied, and the entropy is unchanged. The condition of
equilibrium then implies that the free energy

Jd ≡ −β̃
(
E + 1

2
ΩL− V · P

)
= − 1

2
β̃

∫
ωψd2ro−β̃ 1

2
Ω

∫
ωro

2d2ro+β̃

∫
ω(V ∧ro)zd2ro

(2.22)

is conserved to first order for any displacement (δJd = 0). We may consider that
the particle has the elementary energy ωψ in the stream function ψ due to all the
other fluid particles (like a potential energy for a charge in an electrostatic field), an
elementary angular momentum ωro

2 and an elementary impulse ωro∧iz . The resulting
contribution to the free energy (2.22) is proportional to ωψ+ 1

2
Ωωro

2−V ·ωro ∧ iz =
ωψ′. Therefore if ω 6= 0 somewhere on the boundary, the condition δJd = 0 implies
that ψ′ = const. on the boundary (∂D) (this is analogous to the condition of a constant
potential on the free surface of a liquid at equilibrium in a gravitational field). This
condition still holds if ω = 0 along the whole boundary since ψ′ is a function of ω
at equilibrium. Therefore in all cases ψ′ must be constant on the boundary of the
subdomain (D), and we can always take ψ′ = 0 by an appropriate choice of B in the
definition (2.16).

In summary, for a given subdomain (D) and for given Lagrange multipliers, the
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flow inside (D) is determined as a solution of

−∆ψ′ + 2Ω = fβ̃,g(ψ
′) with ψ′ = 0 on (∂D). (2.23)

This equation has in general several solutions, and the selection among them is
obtained by considering the second-order variations of the entropy, as discussed in
§ 2.5.

Outside (D), the flow remains irrotational, and is uniquely determined as a solution
of the Laplace equation

−∆ψ = 0 with ψ = − 1
2
Ωr2

o + (V ∧ ro)z − B on (∂D) (2.24)

and with the additional condition (2.4) at large distance. The boundary condition
corresponds to ψ′ = 0 and expresses the continuity of ψ at the boundary of (D)
(or, equivalently, the continuity of the normal velocity component). Notice that the
constant B is not arbitrary and will be set by the matching between the inside and
the outside.

In addition, the continuity of the tangential velocity component must be satisfied.
To express this condition, we introduce curvilinear coordinates (χ, ζ) where χ is the
curvilinear abscissa along the boundary (in the trigonometric direction), and ζ the
outward normal coordinate. We define iζ and iχ as the corresponding normal and
tangential unit vectors. With these notations, the continuity of the tangential velocity
implies (

∂ψ′

∂ζ

)
inside

=

(
∂ψ

∂ζ

)
outside

+ (Ω ∧ ro + V )iχ on (∂D). (2.25)

This additional condition determines in principle the shape of the boundary. However,
this shape may be very difficult to obtain explicitly and numerical methods must be
used in general.

The Lagrange multipliers are given only indirectly, through the integral constraints
stemming from the conservation laws (2.5)–(2.8). These are expressed in terms of the
absolute coordinates ro, and it is necessary to express them in the relative coordinates,
linked with the domain (D). This will be discussed in § 2.4.

The stream function solution of (2.24) corresponds to the inviscid flow produced
around a solid body undergoing a rotation at angular veloctity Ω and a translation
at velocity V , while (2.23) describes a steady flow in the frame of reference moving
with this body. A set of equivalent equilibrium states will be predicted describing
the same structure translated to or rotated at different positions. The Euler equation
then indicates that, as time goes on, this structure will steadily travel among this set
of equilibrium states. Notice that the statistical theory does not explicitly describe
time evolution, and involves the Euler equation only through its conservation laws.
The fact that the equilibrium states correspond to steady solutions of the Euler
equation appears therefore as a remarkable feature of the theory. This property
guarantees that the system will remain in the set of equilibrium states once it is
reached. This dynamical justification of the theory, corresponding to the invariance
theorem proved by Robert (1991), can be considered as a weak form of the Liouville
theorem underlying the usual statistical mechanics (but not available for a fluid). It
is interesting to notice that this justification persists in the extension of the theory
that we use here, considering deformations of the domain (D) with the additional
constraint of a fixed area.
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2.4. Expressions for the integral constraints in the relative frame of reference

We have seen that the equilibrium structures are not stationary in the initial frame of
reference but move with a combined motion of rotation and translation, corresponding
to the relation (2.16) between ψ and ψ′. In fact, the motion is either a pure rotation
or a pure translation. Indeed, when Ω 6= 0, the term in V can always be suppressed
by an appropriate choice of the origin, yielding a pure rotation, and when Ω = 0 the
motion is, of course, a pure translation.

In terms of the given conserved quantities, the case of a translation corresponds to
Γ = 0 and P 6= 0, as for instance in a symmetric dipole. Indeed a rotation would be
incompatible with the conservation of the impulse P in this case (the vector would
rotate). The case of a rotation corresponds to the alternative possibility, Γ 6= 0 or
Γ = 0 with P = 0 (for instance in an asymmetric dipole or monopole). This rotation
occurs around the centre of vorticity when Γ 6= 0, and the impulse is zero with this
coordinate origin, so its conservation does not forbid rotation.

This classification can be also obtained directly, without reference to dynamical
arguments. Indeed, the following relation is established in Appendix A:

ΩP = ΓV . (2.26)

From this relation, it follows immediately that if Γ = 0 and P 6= 0, then Ω = 0, so
the motion is a translation. By contrast, if Γ 6= 0, and the origin is chosen at the
centre of vorticity, so that P = 0, then V = 0, and the motion is a rotation.

The case Γ = 0 and P = 0 can be treated using another relation, shown in
Appendix A for a translating structure:

P = CD|D|V (2.27)

where CD is a constant depending only on the domain shape (CD = 2 for the disk).
This is analogous to the classical relation between momentum and velocity for a
particle of mass CD|D|. As a consequence of (2.27), the structure cannot translate if
P = 0, and is necessarily rotating around some centre (even if Γ = 0), or remains at
rest.

In the following, we shall restrict the discussion to the cases Γ 6= 0 (and recover
the case Γ = 0 as a particular limit). According to the previous discussion, it is
convenient to take the origin O at the centre of vorticity, around which the structure
will rotate, so that P = 0 and V = 0. On the other hand, it is also useful to introduce
the proper impulse P ′ and angular momentum L′, defined in the moving frame of
reference by

L′ =

∫
D
ω′r2d2r, (2.28)

P ′ =

∫
D
r ∧ iz ω′d2r. (2.29)

The position r is then determined from an origin C linked with (D), see figure 1,
defined as the centre of mass of the domain, i.e. 〈r〉 = 0, where 〈·〉 = (1/|D|)

∫
D · d

2r
represents the domain average. When the proper impulse P ′ is zero (this is the
case in particular for monopoles and tripoles), the centre of the vortex C coincides
with the centre of vorticity O and the structure is motionless (it can however rotate
around its own axis). In contrast, when P ′ 6= 0 (this is the case for the dipoles), the
structure rotates around the centre of vorticity with a radius of rotation R (we obtain
a translating structure when R →∞).
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Figure 1. Sketch of the coordinates attached to the fixed origin O, and the coordinates attached to
the origin C , moving with the vortex.

These quantities L′ and P ′ intrinsically characterize the vorticity structure, but are
not directly determined by the initial conditions, in contrast to P and L. To relate
these two sets of quantities, we introduce the (vector) distance R = OC , so that
ro = r + R. Using (2.29) and (2.8) with P = 0 (since O is the centre of vorticity) and
〈r〉 = 0 (since C is the centre of mass), we find

P ′ = −Γ r ∧ iz (2.30)

and verify that the impulse P ′ lies along the motion of the vortex (it is tangent to its
circular trajectory). We now introduce a Cartesian system of coordinates (x, y) with
origin at the centre C , y along OC and x perpendicular (see figure 1). In that case,
P ′ has only a component along x:

P ′ =

∫
ω′yd2r = −ΓR. (2.31)

Finally, the relation between the angular momentum of the vortex L′ and the global
angular momentum L is obtained by expanding (2.7), yielding

L = ΓR2 + L′ + 2Ω〈r2〉|D|+ 2RP ′ (2.32)

or, using (2.31),

L = L′ + 2Ω〈r2〉|D| − P ′2/Γ . (2.33)

We also define the proper energy E ′ ≡ 1
2

∫
D ψ

′ω′d2r, related to E using (2.16) (with
V = 0), which leads to

E = E ′ + Ω〈ψ′〉|D| − ΩL

4
− ΓB

2
. (2.34)

These two relations (2.33), (2.34) provide constraints on the solution of (2.23) in the
interior, which replace the constraints on energy and angular momentum used in a
fixed domain. An additional set of constraints is provided by the conservation of
the global vorticity distribution (2.5), in the same way as in a fixed domain (these
constraints will be greatly simplified in the case of strong mixing considered in § 3).
The interior solution is therefore self-consistently defined as a solution of (2.23),
provided we prescribe the constant B and the shape of the domain. Once a solution
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ψ′ and the corresponding Lagrange multipliers β̃ and Ω have been determined, the
radius of rotation R is given by (2.31). Then, the exterior solution is obtained as a
solution of (2.24), with V = 0. The matching condition (2.25) then constrains the
domain shape and determines the constant B. Several solutions can be obtained by
this procedure, as in the case of a fixed domain. The consideration of the second
variations of the entropy will allow us to make a selection among them.

The previous relations have been obtained under the assumption Γ 6= 0. When
Γ = 0, the impulse P is independent of the origin and the centre of vorticity is
rejected to infinity. In the limit Γ → 0 and P 6= 0, the relations (2.26) and (2.31) yield

V = −ΩR (2.35)

with R → ∞ and Ω → 0. As a result, a translating structure can be viewed as
a rotating structure with an infinite radius of rotation. In that case, the angular
momentum is dominated by the product ΓR2 and (2.33) reduces to

ΓL = −P 2 (2.36)

with Γ → 0 and L→∞.

2.5. Second-order variations

The previous solutions cancel the first constrained variations of the entropy (they
are critical points), but are not necessarily maxima. To settle this, we have to check
whether the second variations δ2S are negative for any perturbation that strictly
conserves the constraints. This is equivalent to checking that the second variations
of the free energy (defined with the Lagrange multipliers of the equilibrium state)
are strictly negative (δ2J < 0) for any small perturbation δρ(ro, σ) which does not
change the constraints to first order. Notice that our ‘free energy’ (2.14) is defined for
convenience with the opposite sign from usual thermodynamics, so that it must be
maximum at equilibrium, like the constrained entropy.

Let us first consider perturbations δρ(ro, σ) of the equilibrium probability distribu-
tions ρ(ro, σ) within a fixed domain (D). A Taylor expansion of the general expressions
for the energy (2.6) and entropy (2.12) yields

δ2J = −1

2

∫
(δρ)2

ρ
d2rodσ −

1

2
β̃

∫
δψδωd2ro. (2.37)

The other constraints are linear in ρ so their second variations vanish. Here, ρ and
β̃ refer to the local extremum that we want to perturb. The integral of the second
term can be written, by an integration by parts, as

∫
(∇δψ)2d2r, which is always

positive. Therefore, when β̃ is positive, δ2J is negative and the (single) critical point
is a maximum. It remains a maximum as long as β̃ is greater than the first eigenvalue
of the Laplacian β̃01, as stated by Robert & Sommeria (1991). For smaller values of
β̃, the selection of entropy maxima is not given by any simple criterion (at least in
the general case). In § 3, we will consider a particularly interesting limit of the theory
in which (2.37) can be simplified and yields an illuminating condition of stability.

Furthermore, we now demand that the optimal distribution (2.15) remains an
entropy maximum when we deform slightly the boundary (∂D) while keeping the
area |D| unchanged. This deformation is a continuous area-preserving displacement
of fluid particles, without changing their respective probability distribution. Therefore
the constraints on γD(σ) and local normalization are satisfied by the deformation, and
the entropy is unchanged. The corresponding condition of equilibrium is thus that the
first variation of the free energy Jd, defined by (2.22), vanishes for any deformation
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and that δ2Jd < 0 for the deformations that do not change the constraints to first
order. In contrast, any deformation leading to δ2Jd > 0 will allow the entropy to
increase (by internal mixing) while globally conserving the constraints.

To describe the area-preserving fluid displacement, we introduce a ‘velocity’ field
U (ro, τ) depending on a small ‘time’ parameter τ. We impose ∇ · U = 0 in order to
preserve areas during the displacement. The probability densities (and thus the locally
averaged vorticity) are purely advected by this imposed flow and therefore satisfy the
transport equation

∂ω

∂τ
+ ∇ · (ωU ) = 0. (2.38)

The corresponding energy variation is

dE

dτ
=

1

2

(∫
∂ω

∂τ
ψd2ro +

∫
ω
∂ψ

∂τ
d2ro

)
(2.39)

where integation is over the whole space. The second term on the right-hand side
is equal to the first one, as can be shown by an integration by parts, assuming
∂ψ/∂τ → 0 at large distance. This is justified by the fact that the circulation Γ is
unchanged by the deformation, and so is the asymptotic condition (2.4). Therefore,
the variation of the free energy (2.22) is just

dJd
dτ

= −β̃
∫
∂ω

∂τ
ψ′d2ro (2.40)

where integration is again over the whole space†. An integration by parts and the use
of (2.38) allows us to rewrite this variation as

dJd
dτ

= −β̃
∫
D(τ)

ωU · ∇ψ′d2ro. (2.41)

Now, the integrand remains finite at the boundary (unlike in (2.40) when ω is not
continuous), so we can restrict the integration to the domain D(τ) resulting from the
deformation of (D) at ‘time’ τ. By analogy with electrostatics, a physical interpretation
of (2.41) is that during a ‘time’ dτ, each fluid particle with ‘charge’ ω undergoes the
small displacement Udτ and feels a change of ‘potential’ δψ′ = U · ∇ψ′dτ, changing
its free energy by the amount −β̃ωδψ′.

To first order in τ the variation of Jd is just δJd = τI(0), where I(τ) ≡ dJd/dτ.
The integral in (2.41) at τ = 0 corresponds to the equilibrium state, for which ψ′

is a function h ≡ fβ̃,g
−1 of ω, see (2.19). Therefore ω∇ψ′ can be written as ∇H(ω),

where H is a primitive of the function ωh′(ω). Using an integration by parts and
the incompressibility of U , the first variation can be expressed as a contour integral
around the equilibrium boundary:

δJd = −β̃τ
∮
∂D
H(ω)Uζdχ. (2.42)

The condition that Jd is an extremum when we deform the boundary implies that
δJd = 0 for any incompressible field U . This is only possible if ω, or equivalently ψ′,
is constant along the boundary (indeed, the integral in (2.42) is then proportional to

† Since ω may be discontinuous at the boundary of the domain, ∂ω/∂τ then becomes infinite as
the boundary of the domain moves. However, (2.40) is still well defined if we slightly smooth the
vorticity at the boundary (or use the theory of distributions).
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the flux of U which vanishes, due to the incompressibility condition). Therefore, we
recover the condition that (∂D) must be a streamline in the moving frame (see § 2.3).

The second-order variation is δ2Jd = (τ2/2)I ′(0). The ‘time’ derivative of the
function I(τ) can be calculated by expanding the integral (2.41) over the infinite
plane, and is simply

I ′(τ) = −β̃
∫

∂

∂τ
(ωU · ∇ψ′)d2ro. (2.43)

Making use of (2.38) we obtain the equivalent form

I ′(τ) = −β̃
{∫
D(τ)

ωU · ∇
(
∂ψ

∂τ
+U · ∇ψ′

)
d2ro +

∫
D(τ)

ω
∂U

∂τ
∇ψ′d2ro

}
(2.44)

and we can now restrict the integration to the subdomain D(τ) for the same reason
as before. We need to evaluate this quantity for τ = 0. After an integration by parts,
the second integral can be rewritten

∮
∂DH(ω)(∂Uζ/∂τ)dχ, which vanishes since ω

is constant on the equilibrium boundary and U is incompressible at all ‘times’ (so
the flux

∮
∂D(∂Uζ/∂τ)dχ is zero). Consequently, the second-order variation of the free

energy can be written in terms of just the field U (at τ = 0) as

δ2Jd = −β̃ τ
2

2

∫
D
ωU · ∇

(
Ψ + h′(ω)∇ · (ωU )

)
d2ro (2.45)

where Ψ ≡ ∂ψ/∂τ is defined from U as the (unique) solution of the linear problem:

∆Ψ = ∇ · (ωU ) inside (D),
∆Ψ = 0 outside (D),
Ψ → 0 for ro →∞,

Ψinside = Ψoutside on ∂D,(
∂Ψ
∂ζ

)
outside

−
(
∂Ψ
∂ζ

)
inside

= −ωUζ on ∂D.

 (2.46)

The field Ψ can be viewed as the stream function induced by the superposition
of a vorticity sheet ωUζ (due to the deformation of the boundary) and a field
created by the bulk source ∇ · (ωU ) (due to internal rearrangement). The condition
of maximum entropy is satisfied when δ2Jd 6 0 for any divergenceless field U which
keeps the constraints unchanged to first order. Since δE = − 1

2
ΩδL + V δP to first

order (corresponding to δJd = 0), it is only necessary to demand that δL = δP = 0.
Using (2.7), (2.8), (2.38) and an integration by parts, we can write these first-order
variations as

δL =

∫
D
ωU · rod2ro = 0, (2.47)

δP =

∫
D
U ∧ izωd2ro = 0. (2.48)

In practice, it is very difficult to show that a structure is stable, because we would
have to consider the effect of any deformation field U satisfying ∇ ·U = 0 and (2.47),
(2.48). In contrast, a single perturbation which increases the free energy is sufficient
to assert that a structure is not stable. Hence, our strategy is to find some relevant
deformation U which will destabilize a large number of solutions (2.15). Rather than
choosing a deformation field U , it may be more convenient to choose the value of
the source:

λ(ro) ≡ ∇ · (ωU ). (2.49)
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Indeed, we can express the previous problem in terms of λ only. First of all, we notice
that the value of Uζ on the boundary is simply proportional to λ:

Uζ =
λ

∂ω/∂ζ
on (∂D) (2.50)

since ω = f(ψ′) is constant on the boundary (so that ∂ω/∂χ = 0) and ∇ ·U = 0. As
a result, the field Ψ solution of the problem (2.46) depends only on λ. The second
variations (2.45) of the free energy can be rewritten with an integration by parts as

δ2Jd = −β̃ τ
2

2

{∮
∂D

(Ψ + h′(ω)λ)ωUζdχ−
∫
D

(Ψ + h′(ω)λ)λd2ro

}
(2.51)

which, once again, depend only on λ. This is true also for the first-order constraints
(2.47), (2.48) which can be rewritten

δL =

∮
ωr2

oUζdχ−
∫
λr2
od

2ro = 0, (2.52)

δP =

∮
ro ∧ izωUζdχ−

∫
λro ∧ izd2ro = 0. (2.53)

Therefore, we can express the whole problem in terms of λ without solving explicitly
equation (2.49). Nevertheless, if we want to take λ as a perturbation, we must
prove the existence of a corresponding incompressible field U . We now derive the
conditions that λ must fulfil to be associated with an incompressible velocity field.
Since ∇·U = 0, we can introduce a stream function φ such that U = −iz ∧∇φ. Let us
also introduce a set of orthogonal curvilinear coordinates (ξ1, ξ2) where ξ1 is normal
to the streamlines of the vortex (in the rotating frame) and ξ2 is along them. Let us
denote the corresponding unit vectors by e1 and e2. In term of these coordinates, a
small displacement can be written

dx = h1dξ1e1 + h2dξ2e2 (2.54)

and equation (2.49) takes the equivalent form

λ =
1

h1h2

(
∂ω

∂ξ1

∂φ

∂ξ2

− ∂ω

∂ξ2

∂φ

∂ξ1

)
. (2.55)

Now, we have a relationship ω = fβ̃,g(ψ
′) between vorticity and relative stream

function at equilibrium. Moreover, by construction of our curvilinear system of
coordinates ψ′ depends only on ξ1. Accordingly, (2.55) reduces to

λ =
1

h2

f′
β̃,g

(ψ′)
∂φ

∂ξ2

(
1

h1

∂ψ′

∂ξ1

)
(2.56)

and the last term is nothing but the relative velocity of the flow u′ = −iz ∧∇ψ′. Thus,
(2.49) is equivalent to

∂φ

∂ξ2

= − h2λ

f′
β̃,g

(ψ′)u′
. (2.57)

We know from § 2.2 that fβ̃,g is strictly monotonic; hence, f′
β̃,g

never vanishes (if

β̃ 6= 0), so this equation has a solution for φ (and consequently for U ) if:
(i) λ = 0 at the points where the velocity vanishes (so that λ/u′ remains finite);
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(ii) the integral of (2.57) is zero along a streamline, namely∮
λ

u′
dl = 0. (2.58)

When these two conditions are fulfilled, we can use λ as a perturbation (instead of
U ) and investigate its effect on the vortex stability. This study can be performed
analytically in the linearized limit (see § 3) and will yield an illuminating condition of
stability.

3. The linearized limit
3.1. The linearized equilibrium solutions

We now consider the particular case of a linear relationship fβ̃,g between vorticity
and relative stream function inside the subdomain (D), so that (2.23) takes the form
of a Helmholtz equation:

∆ψ′ + k2ψ′ = k2〈ψ′〉 − Γ ′

|D| with ψ′ = 0 on (∂D). (3.1)

The right-hand-side constant has been written in terms of the domain average 〈ψ′〉
and the circulation Γ ′ = Γ −2Ω|D| in the relative frame of reference, so as to directly
satisfy the constraint on the circulation.

This linearized condition is rigorously obtained from the statistical theory for ap-
propriate values of the conserved quantities, which are commonly approached. Indeed,
such a linear relationship (together with a Gaussian local probability distribution of
vorticity) is obtained by maximizing entropy with any given value of circulation,
enstrophy, energy, impulse and angular momentum (removing the constraints on the
higher-order vorticity moments). This is therefore the result of the complete statisti-
cal theory for an initial condition with the optimal choice of higher-order vorticity
moments. A linear relationship is also approached for any vorticity distribution, in
the appropriate range of energy. In this limit of strong mixing, discussed by Chavanis
& Sommeria (1996), a systematic expansion in β̃σψ′ yields (3.1) with the relation

−k2|D| =
(

1− Γ 2

|D|

)
β̃ ≡ β (3.2)

(in writing (3.1), we have assumed β̃ < 0 and we will see how to extend the results to
the case of positive temperatures).

The temperature β̃ (or wavenumber k) and the angular velocity Ω (or relative
circulation Γ ′) must be related to the integral constraints E, Γ , L by solving the
system (2.33), (2.34). In the linearized approximation, this system takes the form

L = |D|k2(〈ψ′r2〉 − 〈ψ′〉〈r2〉) + Γ 〈r2〉 − P ′2/Γ , (3.3)

E = 1
2
|D|k2(〈ψ′2〉 − 〈ψ′〉2) + 1

2
Γ 〈ψ′〉 − 1

4
ΩL− 1

2
BΓ . (3.4)

The problem (3.1) can be classically solved in term of Bessel functions for a circular
domain (D) with given radius a, while the irrotational outside flow is determined
by (2.24). It happens that the matching condition (2.25) can be satisfied both for
monopole and dipole solutions (Chaplygin 1902; Lamb 1932), for given parameters
Ω and k. We shall determine here the set of solutions corresponding to the given
conserved quantities L, E and Γ . This is a non-trivial problem in itself (even without
reference to the formalism of the statistical theory).
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In a circular domain, the general solution of the Helmholtz equation (3.1) is given
by

ψ′ = 〈ψ′〉 − Γ ′

πα2
+
∑
n

anJn(kr) sin(nθ + δn) (3.5)

where α ≡ ka is a shorthand notation and Jn is the Bessel function of order n (we
have excluded Neumann functions because they would lead to divergencies in the
core of the vortex).

Outside (D), the flow is irrotational and we must solve the Laplace equation (2.24)
with suitable boundary conditions, namely

−∆ψ = 0,
ψ(a, θ) = −ΩRa sin θ − 1

2
Ω(a2 + R2)− B,

ψ ∼ − Γ
2π

ln r (r →∞).

 (3.6)

This problem is straightforward; the stream function outside the vortex is

ψ = − Γ
2π

ln r − ΩRa2

r
sin θ (3.7)

and the compatibility of (3.7) with the boundary condition of (3.6) imposes

B =
Γ

2π
ln a− 1

2
Ω(a2 + R2). (3.8)

Using (3.7) and recalling that V = 0 (since we take the origin at the centre of
vorticity), the matching condition (2.25) reduces to

∂ψ′

∂r
(a−, θ) = 2ΩR sin θ − Γ ′

2πa
. (3.9)

This must be completed by the boundary condition ψ′(a) = 0. Clearly, these conditions
cannot be satisfied conjointly by the modes n > 1 in the expansion (3.5). Therefore,
a circular boundary is only suitable for monopoles (n = 0) or dipoles (n = 1) (to
our knowledge, it is the only possible shape for these structures in the linearized
limit). Tripoles and higher-order modes have a more complicated shape and will not
be considered in this article. However, in § 3.4, we suggest that they are not stable
anyway in the linearized limit.

The case of monopoles and dipoles is discussed in detail in § 3.2 and 3.3. According
to (3.1), (3.3) and (3.4) the only conserved quantities that we have to take into account
in the limit of strong mixing are the energy E, the circulation Γ and the angular
momentum L (the higher-order moments Γn of the vorticity are irrelevant). Moreover,
it will turn out that the structure of the equilibrium state depends in fact on a single
control parameter:

Υ =
4πE

Γ 2
+

1

2
ln

∣∣∣∣LΓ
∣∣∣∣. (3.10)

This is a great advantage of the limit of strong mixing which isolates the relevant
constraints and permits a neat classification of the equilibrium states.

3.2. Monopoles

The axisymmetric solutions of the Helmholtz equation (3.1) are

ψ′ =
Γ ′

2πα

(
J0(kr)

J1(α)
− J0(α)

J1(α)

)
. (3.11)
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These monopoles cannot move, otherwise the centre of vorticity, which coincides with
their own centre, would not be conserved (the proper momentum is P ′ = 0, so R = 0,
according to (2.31)).

The two parameters α ≡ ka and Ω (or equivalently Γ ′ = Γ−2πa2Ω) are determined
by (3.3) and (3.4). The relative circulation is

Γ ′ = 2Γ
J1(α)

J3(α)

(
1

2
− L

Γa2

)
(3.12)

and the ‘temperature’ α satisfies an equation of state expressed in terms of the control
parameter Υ and the scale radius L/Γa2 by

J2
3 (α) = Λ2

(
2
3
J2

2 (α)− J1(α)J3(α)
)

(3.13)

where

Λ =

(
3

H

)1/2(
1

2
− L

Γa2

)
(3.14)

with

H = Υ − 3

4
+

L

Γa2
− 1

2
ln

∣∣∣∣ LΓa2

∣∣∣∣. (3.15)

These results can be extended to positive temperatures by making the substitutions
k → ik, α→ iα and using the identity Jn(it) = inIn(t) where In(t) is the modified Bessel
function of order n.

3.3. Rotating and translating dipoles

The dipole solutions can be written as a linear combination of a pure monopole term
J0(kr) and a pure dipole term J1(kr) sin θ, as

ψ′ = 〈ψ′〉
(

1− J0(k1mr)

J0(α1m)

)
− P ′

πaα1m

J1(k1mr)

J0(α1m)
sin θ. (3.16)

The boundary condition ψ′(a) = 0 can be only satisfied if the ‘temperature’ α is a
zero α1m of the Bessel function J1. On the other hand, the matching condition (3.9)
determines the rotation rate by

Ω =
Γ

2πa2
. (3.17)

When Γ 6= 0, the dipoles are asymmetric and rotate around the centre of vorticity with
angular velocity Ω. The radius of rotation R = −P ′/Γ and the degree of asymmetry
〈ψ′〉 satisfy the equations of state, deduced from (3.3) and (3.4):

L

Γa2
= −4π

Γ
〈ψ′〉+

1

2
−
(
R

a

)2

, (3.18)

Υ =
2π2

Γ 2
α2

1m〈ψ′〉2 +
3

2

(
R

a

)2

+
2π

Γ
〈ψ′〉 − L

2Γa2
+

1

2
ln

∣∣∣∣ LΓa2

∣∣∣∣+
1

2
(3.19)

involving once again the control parameter Υ and the scale radius L/Γa2.
When Γ → 0 (with ΓL finite), the radius of rotation R → ∞ and we get a

translating dipole (Ω = 0) with travelling velocity V = −ΩR (see § 2.4). Its angular
momentum is infinite (since the centre of vorticity is rejected to infinity) but its linear
impulse P is now independent of the origin and can serve as a control parameter.
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Combining (3.17) and (2.31), we obtain

V =
P

2πa2
. (3.20)

This is of the general form (2.27) and we establish CD = 2 for a circular domain.
The translating dipoles with discontinuous vorticity are still asymmetric due to the
presence of the monopole term. Schematically, the monopole is ‘carried’ by the dipole
and is called a rider (see figure 5b). Its amplitude 〈ψ′〉 is determined by (3.18) and
(3.19), when Γ → 0. Equation (3.18) returns (2.36) while (3.19) reduces to

E = 1
2
πα2

1m〈ψ′〉2 +
P 2

2πa2
. (3.21)

Of course, assuming Γ = 0 from the begining would have led (more directly) to the
same results, but, for the unity of the discussion, it is more convenient to treat a
translating dipole as a rotating dipole with an infinite radius of rotation.

3.4. Classification of the stable isolated vortices

The previous solutions only cancel the first variations of the entropy (they are critical
points). The analysis of the second variations will discard a lot of these solutions as
no entropy maxima. This analysis is performed in § 3.5 and gives the following results:
(i) the stability to vorticity rearrangement at fixed boundary can be only satisfied if
β > β11 (where β11 = −πα2

11 ' −46.12 is the temperature of the fundamental dipole).
If β < β11, a quadrupolar perturbation is found to destabilize the vortex. (ii) The
stability to boundary deformation demands β 6 0 and, in most cases, ω(a) ' 0. In
this section, we will consider that the stability conditions are exactly

β11 6 β 6 0, (3.22)

ω(a) = 0. (3.23)

A more accurate discussion is postponed to § 3.5.
The condition of continuity (3.23) can be satisfied only if the vortex has a very

specific radius. Therefore, its size which was a free parameter in the problem is in
fact determined by the stability conditions (accounting for boundary deformation).
As a result, we obtain a complete prediction of the equilibrium states in terms of the
single control parameter Υ (and the sign of ΓL).

The radius and the temperature of the monopoles (3.11) with continuous vorticity
are determined by the equations of state

L

Γa2
=

1

2
− J3(α)

αJ2(α)
, (3.24)

Υ =
1

4
+

J3(α)

αJ2(α)
+

2

α2

(
1− 3

2

J1(α)J3(α)

J2
2 (α)

)
+

1

2
ln

∣∣∣∣∣12 − J3(α)

αJ2(α)

∣∣∣∣∣ (3.25)

resulting from (3.13)–(3.15). In figure 2, we have plotted the scaled radius (3.24) as
a function of Υ (dashed line). When ΓL 6 0, the monopoles are always unstable.
When ΓL > 0, the stable monopoles exist only in the range Υm 6 Υ 6 ΥM: below
Υm = 11

24
− 1

2
ln 3 ' −0.09097 (obtained from (3.25) with α = 0) the temperature is

positive and above ΥM = 6
α2

11
+ 1

4
+ 1

2
ln | 1

2
− 4

α2
11
| ' −0.08151 (obtained from (3.25)

with α = α11 ' 3.83) the temperature is smaller than β11, violating the stability
condition (3.22). It is noteworthy that the range of stability is very narrow while the
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Figure 2. Stability diagram for the monopoles. The stable monopoles lie in the narrow grey region
bordering the branch of monopoles with continuous vorticity and temperature β11 < β < 0 (dashed
line). Their radius (the ordinate) is determined well by the single control parameter Υ (the abscissa)
and the scale factor L/Γ . Notice that the stable monopoles can exist only for ΓL > 0. The domain
delimited by solid lines corresponds to linear monopoles with temperature β11 < β < +∞. It has
been obtained numerically, but its structure can be understood by a graphical study of equations
(3.13)–(3.15). Beyond the curves β = +∞, there is no linear monopole.

curve determining the vortex radius is very flat. As a result, we predict a typical size
a ∼ 2(L/Γ )1/2 for the vortex radius (see figure 2), whatever the control parameter Υ
in [Υm, ΥM].

Some vorticity profiles are represented in figure 2. They correspond to a stream
function

ψ′ =
Γ

πα2

(
J0(kr)

J2(α)
− J0(α)

J2(α)

)
(3.26)

obtained from (3.11), (3.12) and (3.24). The stable monopoles have similar profiles:
the vorticity monotonically decreases with r (if Γ > 0) until ω = 0. The monopoles
with an oscillating vorticity are always unstable. This property, compatible with linear
stability analysis, results directly from (3.22): indeed, α11 is not only the first zero of
Bessel function J1 but it corresponds also to the first minimum of Bessel function J0

(since J ′0(t) = −J1(t)). For Υ = Υm, β = 0, Ω → ∞ and the vorticity has a parabolic
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profile ω = (2Γ/πa2)(1 − r2/a2) (a limit case of (3.26) when k → 0). For Υ = ΥM ,
α = α11 and the vorticity vanishes at the edge of the vortex with a horizontal slope.

The previous results are valid for Γ 6= 0. The monopoles with Γ = 0 and L 6= 0
correspond to a diverging control parameter (Υ ∼ 4πE/Γ 2 → +∞) and are therefore
unstable (their temperature β = β2m = −πα2

2m, determined by (3.25), is always smaller
than β11). The case Γ = L = 0 is very singular and cannot be easily obtained as a
limit of the previous study. Coming back to equations (3.3), (3.4) and (3.11), we find
β = β3m < β11 and ω(a) 6= 0 for any radius. As a result, the monopoles with zero
circulation are always unstable in our case of a linear relationship between vorticity
and stream function.†

We now consider the case of dipoles. As discussed in § 3.3, the temperature of the
dipoles is ‘quantized’: it must be a zero α1m of the Bessel function J1. A priori m can
be any integer, but the stability condition (3.22) selects only the fundamental mode
m = 1. In addition, their vorticity must be continuous, according to (3.23). This is
satisfied for a specific radius given by

L

Γa2
= τc − τ, (3.27)

Υ = 1 + 1
2
τ+ 3

2
(τ− τc) + 1

2
ln |τ− τc| (3.28)

where τ ≡ (R/a)2 is a kind of aspect ratio and τc ≡ 1
2
−4/α2

11 ' 0.22756 is a shorthand
notation. The degree of asymmetry is simply:

〈ψ′〉 =
Γ

πα2
11

(3.29)

and the relative stream function (3.16) reduces to

ψ′ =
Γ

πα2
11

(
1− J0(k11r)

J0(α11)

)
+

ΓR

πaα11

J1(k11r)

J0(α11)
sin θ. (3.30)

The equation of state (3.28) determining the aspect ratio τ has two branches of
solutions (see figure 3). The upper branch with τ > τc is only accessible when ΓL < 0,
while the lower branch, with τ < τc, exists only for ΓL > 0 and Υ < ΥM .

Let us consider some special limits: when L → 0 (with Γ 6= 0), the control
parameter Υ diverges to −∞ and the aspect ratio τ → τc. Combining (3.27) and
(3.28), we obtain 4πE/Γ 2 = 1 + 1

2
τc − ln a which determines the vortex radius a, and

the radius of rotation R = (aτc)
1/2. When Γ → 0 and L → ∞ (with ΓL < 0), the

control parameter Υ diverges to +∞ and we get a translating dipole (τ → ∞). Since
the vorticity is continuous, this dipole is symmetric (no rider) with relative stream
function

ψ′ = − P

πaα11

J1(k11r)

J0(α11)
sin θ. (3.31)

Its radius is given by the relation

E =
P 2

2πa2
(3.32)

resulting from (2.36) and the asymptotics Υ ∼ 4πE/Γ 2, τ ∼ 1
2
Υ , L/Γa2 ∼ −τ. This

† Note that robust monopoles with zero circulation have been observed in laboratory by
Kloozterziel & van Heijst (1992), and linear stability has been shown for families of zero-circulation
monopoles by Carton et al. (1989) and by Carton & Legras (1994). However, these stable monopoles
are characterized by a nonlinear relationship between vorticity and stream function.
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Figure 3. Recapitulatory diagram classifying the stable monopoles and dipoles (in translation or
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represents the aspect ratio of the rotating dipoles determined by the equation of state (3.28). The
segment at R = 0 corresponds to monopoles (which do not move). Examples of vorticity fields are
shown for illustration (solid lines are positive vorticity isovalues and dotted lines negative ones).

‘particle’ (called a modon in geophysics) travels with a velocity

V = E/P (3.33)

obtained from (3.20) and (3.32).
These solutions, represented in figure 3, can be compared with the three kinds

of structures found in a bounded domain by Chavanis & Sommeria (1996). The
monopoles (3.26) exist at various temperatures given by the equation of state (3.25)
and form what we called the continuum phase. In contrast, the translating dipole
(3.31) is a discrete mode (the fundamental eigenfunction of the Laplacian with zero
average) which can exist only at β = β11 (the corresponding eigenvalue). These two
solutions are connected by the rotating dipoles (3.30) which can be considered, in
the language of phase transitions, as a coexistence between the two previous phases
(since they correspond to a linear combination of solutions (3.26) and (3.31)). This
coexistence is possible for β = β11 only, like the coexistence of a liquid and a solid
phase at the transition temperature. The proportion τ1/2 = R/a of these two phases is
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determined by the control parameter Υ via the equation of state (3.28). When Υ = ΥM ,
we have R = 0 and we recover the standing monopole with temperature β11. When
both phases coexist, one lobe of the dipole dominates the other and the structure
rotates. Finally, when Υ → +∞, the two lobes have equal strength, the radius of
rotation R becomes infinite and the dipole translates.

For Υm < Υ < ΥM (and ΓL > 0), monopolar and dipolar structures are predicted
(with different radius). We could try to compare their entropy to decide which
structure will be selected at equilibrium; however, both structures are local maxima
of entropy and it is more plausible that the selection will be made by the relaxation
process and the topology of the initial condition (rather than the pure comparison of
their entropy).

Tripoles are never selected as stable structures in the bounded disk (in the linearized
approximation). Similarly, the stability condition (3.22), stating β > β11, would exclude
tripoles as well as all higher-order structures (which involve larger eigenvalues) in the
linearized limit. However, this is only a suggestion here, as their shape is not a disk
and we do not have explicit solutions for them.

Finally, we must not forget that the domain (D) is necessarily larger than the
domain (D0), initially containing the non-zero vorticity. With our non-dimensional
units |D0| = 1, so that this condition imposes πa2 > 1, or equivalently

π

∣∣∣∣LΓ
∣∣∣∣ > ∣∣∣∣ LΓa2

∣∣∣∣. (3.34)

This leads to a further restriction on the stable states. For instance, the monopoles
are only obtained for L/Γa2 > 0.227 (reached for Υ = ΥM , see figure 2), and due to
(3.34), this is only possible if L/Γ > 0.0723. In the case of a translating dipole, the
radius is given by (3.32) and the same condition πa2 > 1 implies P 2/2E > 1: there is
no possible equilibrium in a single structure if the momentum is too small. We then
expect a splitting into several bubbles, as observed in some numerical computations.

3.5. Selection by maximum entropy

We derive here the conditions of stability (3.22), (3.23) used in § 3.4, starting from
the general expressions given in § 2.5. In the linearized limit, we can simplify these
expressions considerably and find some destabilizing perturbations which discard
many solutions as not entropy maxima.

First of all, we show that the condition of stability to vorticity rearrangement in a
fixed domain (D) discards the solutions which have a temperature β smaller than the
temperature β11 of the fundamental dipole (or equivalently α > α11 ' 3.83, the first
zero of Bessel function J1).

To that purpose, we choose a particular perturbation δρ(r, σ) and calculate the cor-
responding second variations (2.37) of the free energy. Such a perturbation depends
both on the position r and on the distribution of the vorticity levels σ. However, we
can choose only the dependence on position δω(r) and find the most destabilizing
distribution of vorticity levels by an optimization calculation. In the limit of strong
mixing, the equilibrium probability is almost uniform ρ(r, σ) ' γD(σ)/πa2 (see Cha-
vanis & Sommeria 1996), so that the second variations of the entropy (the first term
in (2.37)) are locally proportional to δ2s = −

∫
((δρ)2/γD(σ))dσ. The perturbation δρ

must satisfy the normalization condition (2.1) to first order
∫
δρ dσ = 0, and for

a given perturbation δω, we must have also
∫
δρ σdσ = δω. We can easily show

that the most destabilizing perturbation (which maximizes δ2s with the two previous
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Figure 4. Schematic evolution of a monopole destabilized by a quadripolar perturbation of the
form (3.37). The vortex could further evolve towards a tripole or break down into two dipoles
translating in opposite directions.

constraints) is

δρ(r, σ) =

(
σ − Γ

πa2

)
γD(σ)δω(r). (3.35)

The second variations (2.37) of the free energy are therefore always smaller than

δ2J = −πa
2

2

∫
(δω)2d2r − 1

2
β

∫
δψδωd2r. (3.36)

Let us now consider a quadrupolar perturbation of the form

δω(r) = J2(k11r) sin 2θ (3.37)

with k11 = α11/a. The associated stream function compatible with the boundary
conditions (continuity of the stream function and of the velocity) is δψ = δω/k2

11

(inside the subdomain D). Moreover, it can be readily verified that (3.37) conserves the
constraints to first order. Indeed it does not change the circulation nor the angular
momentum, because of its zero angular mean. The impulse is also unchanged by
this quadrupolar perturbation, unlike for the dipolar perturbation (proportional to
sin θ) considered in a bounded domain by Chavanis & Sommeria (1996). Finally, the
basic state is either a monopole (3.11) or a dipole (3.16), so it is orthogonal to the
perturbation, and the energy constraint is satisfied to first order.

The second variations (3.36) of the free energy induced by this perturbation are
proportional to

δ2J =
π2a4

2

(
β

β11

− 1

)
. (3.38)

They are strictly positive when β < β11. Therefore, when β < β11, the critical point
(3.11) cannot be a local entropy maximum: we can figure out that the quadrupolar
perturbation will grow. The monopole will presumably break down into two dipoles
translating in opposite directions, or form a tripole (see figure 4) like in the experiments
of Kloosterziel & van Heijst (1991) or in the numerical simulations of Carton &
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Figure 5. Boundary deformation of a monopole (a) and of a dipole (b) corresponding to formulae
(3.40) and (3.46). The deformation (3.46) tends to evacuate some vorticity behind the dipole; this
is consisitent with the trail observed in laboratory experiments and numerical simulations. The
particular dipole represented on (b) is translating (Γ = 0) and carries a ‘rider’ (see § 3.3). Its vorticity
field, proportional to ω = λJ0(k11r) + J1(k11r) sin θ with λ = (2πa2E/P 2 − 1)1/2, is discontinuous at
r = a (except in the symmetric case λ = 0). The second variations (3.47) of the free energy induced
by the deformation (3.46) are proportional to δ2Jd = λ2 − 3

16
J3(α11)J5(α11)/J2

4 (α11) ' λ2 − 0.13:
for stability reasons, the amplitude of the rider must be less than λc ' 0.36. The dipole of (b),
corresponding to λ = 0.5 is therefore unstable.

Legras (1994) and Robert & Rosier (1997). The same criterion β < β11 eliminates
higher-order dipolar solutions (3.16), with temperature β = β1m when m > 1.

We now show that the condition of maximum entropy when we deform slightly
the boundary of the subdomain (D) implies that the temperature must be negative
and that, in most cases, the vorticity must be continuous (or slightly discontinuous)
across (∂D).

In the case of monopoles (3.11), we consider a perturbation of the form

λ(r, θ) = Jm(kr) sin(mθ) (3.39)

where k is the wavenumber of the monopole that we want to perturb. We show
in Appendix B that λ can be associated with an incompressible velocity field of
deformation U which satisfies the constraints to first order if m > 1. The deformation
of the boundary corresponding to this perturbation (represented in figure 5a) is given
by (2.50), yielding

Ur(a, θ) = −2πa3

Γ ′α2
Jm(α) sin(mθ). (3.40)

The second variations of the free energy (2.51) are obtained by solving the problem
(2.46). When β̃ < 0, we find in Appendix B

δ2Jd =
β̃πa4

2mα2

(
Jm−1(α)− ω(a)

2πa2Jm(α)

Γ ′α

)(
Jm+1(α) + ω(a)

2πa2Jm(α)

Γ ′α

)
. (3.41)

These results can be easily extended to positive temperatures with the aid of modified
Bessel functions (see § 3.2). We can obtain interesting results by considering special
limits of expression (3.41). If the discontinuity ω(a) of the vorticity is strong (and α
not too small), equation (3.41) simplifies to

δ2Jd ' −
2β̃π3a8

mΓ ′2α4
J2
m(α)ω(a)2 > 0 (3.42)
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which is strictly positive (since β̃ < 0). As a result, when the vorticity is strongly
discontinuous, the vortex is not stable with respect to boundary deformations.

The deformation criterion also makes a clear distinction between positive and neg-
ative temperatures. Let us consider the case of a continuous vorticity ω(a) = 0; then,
the second-order variation of the free energy (3.41) valid for negative temperatures
becomes

δ2Jd =
β̃πa4

2mα2
Jm−1(α)Jm+1(α). (3.43)

Since m > 1 and α < α11, we have δ2Jd 6 0: the monopoles with a continuous
vorticity and a negative temperature are stable with respect to boundary deformation.
In contrast, in the case of positive temperatures, we find

δ2Jd = (−1)m+1 β̃πa
4

2mα2
Im−1(α)Im+1(α). (3.44)

When m is odd, δ2Jd > 0: the monopoles with positive temperatures are unstable.
This result has been obtained for a continuous vorticity but it remains valid in any
case, as seen by a systematic determination of the variations (3.41) for different
modes m = 2 to 10 (it turns out that higher modes do not bring new possibilities of
instability). For this purpose, we scan the two parameters Υ and L/Γa2, determine
the corresponding values of α, Γ ′, ω(a) from (3.11)–(3.15) and calculate δ2Jd from
(3.41). We have limited our analysis to the part of the plane (delimited by solid lines)
inside which β > β11 (outside this region, the stability condition corresponding to
(2.37) is not satisfied). We then observe that the stable vortices (δ2Jd < 0) lie in a
very narrow region (in grey in figure 2) bordering the line of the monopoles with a
continuous vorticity and a negative temperature (the dashed line). As a result, the
stability criteria bring very strong constraints on the possible size of the equilibrium
vortex; from figure 2, we can estimate that the statistical theory allows only a deviation
of order 10% (in radius) with the continuous monopole. There is also a region of
stability for Υ 6 Υm. It corresponds to monopoles with discontinuous vorticity and
slightly negative inverse temperatures. The discontinuity ω(a) increases monotonically
when we vary the control parameter from Υm to Υ∗. At Υ∗ = 1

4
− 1

2
ln 2 ' −0.0966, the

discontinuity is maximum and we obtain a disk of radius L/Γa2 = 1
2
.

In the case of dipoles, we consider a perturbation of the form

λ(r, θ) = J4(k11r) sin(4θ) + ηJ1(k11r) cos θ (3.45)

where k11 is the wavenumber of the unperturbed dipole (3.16). The first term in (3.45)
does not satisfy the conservation of the impulse Py; to restore it, we have added a
solid rotation (corresponding to the second term). The coefficient η is adjusted in
order to have exactly δPy = 0 (see Appendix B). The first term of this perturbation
is in a mode m = 4, yielding a boundary deformation (2.50) of the form

Ur(a, θ) = − 2πa4

P ′α2
11

J4(α11)(cos θ + cos 3θ). (3.46)

This is the first non-trivial deformation we can choose: the mode m = 2 yields only
the term in cos θ corresponding to a pure translation (so it does not change the free
energy) and the mode m = 3 has not the right symmetry to be associated with an
incompressible velocity field of deformation. In contrast, as shown in Appendix B,
the mode m = 4 satisfies this condition and also satisfies the integral constraints to
first order (when superimposed on a solid rotation η). Moreover, the deformation
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in cos 3θ represented in figure 5(b) tends to create a trail behind the dipole which
is often observed in numerical simulations and laboratory experiments (see e.g. van
Heijst & Flor 1989).

This perturbation has therefore a nice structure. The second-order variations of the
free energy (2.51) are (see Appendix B)

δ2Jd = − β̃11πa
4

8α2
11

(
16π2a6

3P ′2α2
11

J2
4 (α11)ω(a)2 − J3(α11)J5(α11)

)
. (3.47)

When the vorticity is strongly discontinuous, the first term dominates and δ2Jd > 0;
in contrast, for weak discontinuities, only the second term remains and δ2Jd < 0. As
before, we find that the condition of maximum entropy with respect to boundary
deformation forbids a strong discontinuity of vorticity. To be more precise, we have
represented the stability diagram of the dipoles in figure 6. We can first notice that
the equation of state (3.18), (3.19) has solutions only in the domain enclosed by the
solid curves. We can easily verify that these curves correspond to the dipoles with a
continuous vorticity. As a result, the continuous dipole is the smallest dipole we can
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construct (in the linearized limit) for a given set of control parameters. Dipoles with
higher radii exist but they are more and more discontinuous and must be rejected
as not entropy maxima via boundary deformation. Once again, we observe that this
stability condition is very stringent since the stable solutions (satisfying δ2Jd < 0)
lie in a very narrow range (in grey) near the continuous dipoles. From figure 3, or
by direct calculation, we can estimate that the deviation from the continuous dipole
must be less than 10% (in radius) and is even smaller when Υ → −∞.

4. Comparison with a minimum-enstrophy principle
A first attempt to predict the organization into an isolated vortex by an optimum

principle was made by Leith (1982). His theory is based on a selective decay hypothesis
(see e.g. Kraichnan & Montgomery 1980) for two-dimensional slightly viscous flows:
the system organizes into a minimum-enstrophy state with given ‘rugged’ conserved
quantities such as energy, circulation and angular momentum. It predicts a linear
relationship between vorticity and stream function and an optimal radius which
provides a continuous vorticity at the edge of the vortex. We found that his theory
must be improved to avoid possible inconsistencies.

(i) Leith restricts the problem to axisymmetric structures (which is always possi-
ble) but he also constrains the perturbations to be axisymmetric; this is an artificial
limitation because non-axisymmetric perturbations are more destabilizing than ax-
isymmetric ones. For example, a monopole with zero circulation is stable under
axisymmetric perturbations but unstable under non-axisymmetric perturbations. This
was observed by Leith through numerical experiments (leading to the formation of a
tripole) as he mentions in the conclusion of his article, but this was not predicted by
his theoretical work.

(ii) He considers very particular control parameters: his so-called MEV M corre-
sponds to a vortex with zero circulation (Γ = 0) and his MEV C has no angular
velocity (Ω = 0). This limitation is not necessary and in Appendix C, we generalize
his results to arbitrary values of the control parameters.

(iii) Finally, there is another, more fundamental, difficulty: Leith minimizes the
enstrophy G with respect to the radius and finds an optimal radius by the condition
δG = 0 which happens to correspond to a vorticity continuously dropping to zero at
the vortex edge. However, it turns out that this is just an inflection point of G versus
radius (δ2G = 0), as shown in figure 7. In fact the enstrophy decreases monotonically
with the radius and there is no minimum, so the variational condition is not truly
satisfied.

Our analysis avoids these inconsistencies by introducing the concept of a ‘maximum
entropy bubble’. The restriction to a subdomain is justified by kinetic processes and
the size of the structure results from stability conditions: it is only for a narrow range
of radii, corresponding to a nearly continuous vorticity, that the structure is stable to
boundary deformations. Moreover, in the limit of strong mixing, we can show that
a ‘maximum-entropy bubble’ is equivalent to a ‘minimum-enstrophy bubble’. Indeed,
minimizing enstrophy at fixed boundary (∂D) yields a linear relationship between
vorticity and stream function, like in the limit of strong mixing of the statistical
theory. Moreover, in this limit, we can relate the entropy at equilibrium to the
coarse-grained enstrophy by the relationship (see Chavanis & Sommeria 1996)

|D| Γ c.g.
2 = Γ 2 − 2S (4.1)

which clearly shows an equivalence between a maximum-entropy state and a minimum-
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Figure 7. Enstrophy vs. radius for linear vortices. The critical point of this curve corresponds to a
monopole with continuous vorticity. The control parameter is equal to Υ ' −0.08828. According to
(C 16) and (C 17) (with m = 1), this monopole corresponds to Leith’s MEV C (Ω = 0) with radius
(Γ/L)1/2a ' 1.8009. This vortex is not a local minimum of enstrophy (versus radius) but rather an
inflection point.

enstrophy state in a given subdomain (we have introduced the notation S ≡
(1 − (Γ 2/|D|))(S − S0), where S0 is the entropy corresponding to uniform density
probabilities).

To be more complete, we can compare the second variations of the two functionals
Γ

c.g.
2 and S around equilibrium. The second variations of the enstrophy δ2Γ

c.g.
2 =

1
2

∫
(δω)2d2ro depend only on the perturbation δω of the locally averaged vorticity

field, while the second variations of the entropy δ2S = − 1
2

∫
((δρ)2/ρ)d2rodσ depend on

the optimal density probability ρ and on the perturbation δρ of the density probability
around this optimal state. However, we have shown in § 3.5 that, in the limit of strong
mixing, we could make the approximation ρ(ro, σ) ' γD(σ)/|D| and that the most
destabilizing perturbations were of the form δρ(ro, σ) ∝ γD(σ)(σ − Γ/|D|)δω(ro).
Then, the second variations of the entropy are proportional to δ2S = − 1

2

∫
(δω)2d2ro

like the second variations of the enstrophy (with the opposite sign). Finally, the
stability conditions to boundary deformation are the same in each case because
we just displace the vorticity without changing entropy or enstrophy. Therefore, a
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minimum-enstrophy state is completely equivalent to a maximum-entropy state in the
limit of strong mixing when we introduce the concept of an ‘optimal bubble’.

5. Discussion and conclusions
We have proposed a general explanation for the self-organization of two-dimensional

turbulence into isolated vorticity structures. Such structures emerge as statistical equi-
librium states of the Euler equation, provided we make the additional assumption of
a maximum-entropy bubble: vorticity mixing is restricted to a domain with a given
area, but deformable shape. This structure depends only on the conserved quantities,
and on the area of this bubble. The latter depends on kinetic constraints, but it
appears that equilibrium solutions can be obtained only for a very restricted range
of areas, so that this area can be predicted within a good approximation from the
conserved quantities only.

The equilibrium states can be obtained in principle as solutions of the well-defined
variational problem stated in § 2, but the practical resolution of this free boundary
problem will require the development of appropriate numerical methods. We make,
however, some general predictions (in § 2) without actually solving the variational
problem. In particular, self-organization always results in a steadily translating or
steadily rotating structure (or possibly into several separated structures) characterized
by a monotonic† relationship between vorticity and stream function.

Moreover, we can get a good idea of the general equilibrium solutions by as-
suming a linear relationship between vorticity and stream function. This is justified
as a particular limit of strong mixing, discussed by Chavanis & Sommeria (1996)
for a bounded domain. In this limit, the maximum-entropy principle is equivalent
to a minimum-enstrophy principle, stated in § 4 and compared with the minimum
enstrophy principle used by Leith (1984). Notice that these two principles are not
identical: in both cases, enstrophy is minimized with respect to internal vorticity
rearrangements, but Leith (1984) also minimizes the enstrophy with respect to vari-
ations of the vortex radius a (in fact, this does not give a true minimum but an
inflection point), while we minimize enstrophy with respect to boundary deformations
with a fixed area. Furthermore Leith restricts his analysis to axisymmetric equilibria
with particular values of the conserved quantities, and considers only axisymmetric
perturbations. Our analysis is much more general.

We have shown in § 3 that the vorticity structures with a linear relationship between
vorticity and stream function only depend on a parameter Υ and on a scaled radius
a|Γ/L|1/2. The control parameter Υ is constructed from the energy E, circulation
Γ and angular momentum L. This analysis therefore provides a monopole and a
dipole solution for any set of conserved quantities and any radius a (restricted to
an appopriate domain of existence for solutions, as indicated in figures 2 and 6).
This is an interesting result, even without reference to the underlying statistical
theory. Indeed, although these monopole and dipole vorticity fields are well-known
solutions of the Euler equation, their determination for a given set of conserved
quantities is a nonlinear problem (due to the nonlinear energy constraint), and it is
not straightforward.

The condition of a local entropy maximum, obtained by analysing the second
variations, considerably restricts this set of solutions: the grey areas in figures 2 and

† It must be an increasing function, corresponding to a negative temperature β, in the linearized
case, and it is probably true more generally for any isolated equilibrium vorticity structure.
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6 indicate the ranges of parameters leading to such stable solutions. These are in
a small neighbourhood of the lines corresponding to solutions with a continuously
vanishing vorticity at the vortex boundary. This condition of continuity determines
the vortex radius as a function of the single control parameter Υ (and the sign of
LΓ ). As a result, we obtain a nice classification of isolated structures in terms of
this single control parameter, as shown in figure 3. Depending on this parameter, we
predict monopole or dipole structures (rotating or translating) and our classification
gives a unified picture of the ‘zoology’ of coherent structures. We were not able to
look for tripole solutions, as the boundary is not a circle, but we argue in § 3.4
that they are probably unstable in the linearized limit, as well as all higher-order
structures (quadrupoles etc). Tripoles are, however, obtained as a restricted statistical
equilibrium far from the limit of strong mixing, as shown numerically by Robert &
Rosier (1997).

The selection of the radius can be physically interpreted as follows: if the radius of
the mixed region (i.e. the vorticity structure) is below the narrow range of stability,
its contour will deform more and more, as this deformation brings free energy to
the system, which allows the entropy to increase by internal rearrangement. This
deformation should occur until it irreversibly entrains surrounding fluid in the mixed
region, which then reaches a larger radius. If the radius is instead beyond the range of
stability, we expect that the contour deforms until it splits in two (or more) separate
structures. In § 3.5, we have examined the free energy brought by different modes of
perturbation, and this provides hints for likely modes of instability. For instance, in
the case of a dipole, the mode of deformation shown in figure 5b can grow when
the radius is too large (beyond the grey areas of figure 6), corresponding to an
excessive discontinuity of the vorticity at the dipole boundary. As this perturbation
further develops, we anticipate that vorticity will be released behind the dipole, and
this process is indeed commonly observed in numerical simulations or laboratory
experiments. We have found also that monopoles with positive and negative vorticity
are always unstable: the quadrupolar internal perturbation sketched in figure 4 will
increase the entropy. The further development of this perturbation would correspond
to the formation of a tripole, or to the splitting into two dipoles, and this is indeed
observed in the laboratory experiments of Kloosterziel & van Heijst (1991) and in
the numerical simulations of Carton & Legras (1994) and Robert & Rosier (1997).

From the curves of figure 3, we can predict a final state resulting from arbitrary
initial conditions, by calculating the corresponding conserved quantities contributing
to the control parameter Υ . Monopoles are predicted in the small interval [Υm, ΥM]
if ΓL > 0. Dipoles are also possible for the same range of parameters, but with a
different radius, and the choice will probably depend on kinetic effects. Dipoles are
the only possible equilibria for Υ < Υm, and for ΓL < 0 (with any value of Υ ). For
ΓL > 0 and Υ > ΥM , there is no possible equilibrium. An additional constraint (3.34)
expresses that the area of the equilibrium structure must be larger than the initial
unmixed patch. This further reduces the possibility of equilibrium states, especially
when Γ is small. For instance if Γ = 0, we get a translating dipole with radius a
given by (3.32), and this is clearly excluded if the impulse P is too small. In that case,
we expect the system to organize into two dipoles with opposite motion, so that each
dipole can have a large proper impulse, although the total impulse is weak.

Of course these predictions rely on the linearized approximation, and we may
wonder about its relevance for any given initial condition. A numerical resolution of
the general variational problem would be then most useful, and the present analysis of
the linearized case would provide a good guide to such an undertaking. This question
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can also be addressed by expanding the results to higher orders in the argument βσψ′,
as discussed by Chavanis & Sommeria (1996) in a bounded domain. This expansion
involves the successive moments of vorticity (> 2), so new control parameters are
introduced (e.g. the kurtosis), which makes the classification more complex. In a
bounded domain, the linearized approximation turns out to be often reasonably good
when both positive and negative vorticity can mix, which corresponds here to dipoles.
Dipoles are indeed often observed with a relationship between vorticity and stream
function which is not too far from linear (see e.g. Nguyen Duc & Sommeria 1988).
Notice also that remarkably monopoles with a linear relationship have been observed
in electron plasmas (Huang & Driscoll 1994), but we do not expect this feature to be
general.

Self-organization into isolated vorticity structures is often observed in a fully
turbulent field. Then it is not possible to clearly identify an initial condition with
an isolated vorticity patch, from which we could calculate our integral constraints.
Understanding the process of initial isolation is then a quite difficult problem which
was not adressed here. However our approach could be useful to predict the result of
vortex interactions once they are already well isolated from the background. It also
provides general ‘robustness’ criteria for isolated vorticity structures.

This work was supported by the research program PATOM of the C.N.R.S. We
have benefited from many discussions with R. Robert and the team of Laboratoire
d’Analyse Numérique at Université de Lyon.

Appendix A. Relations between Lagrange multipliers and conserved
quantities

We first prove the general relation (2.26) between the Lagrange multipliers and the
conserved quantities. The conservation of the impulse results from the identity∫

ωuxd
2ro = 0 (A 1)

obtained by expressing ux in terms of ω by the Biot & Savart formula, and using
antisymmetry arguments in the resulting integral (see e.g. Batchelor 1967, p. 528).
With an integration by parts, (A 1) can be written∫

D
xou∇ωd2ro =

∮
xoω(u · iζ)dχ (A 2)

where the surface integral is restricted to the subdomain (D), and the contour integral
is along the boundary (∂D).

The relation between the absolute and the relative velocity corresponding to (2.16)
is

u = u′ +Ω ∧ ro + V . (A 3)

Using the condition u′ · iζ = ∂ψ′/∂χ = 0 on the boundary (for a stationary state), we
obtain ∫

D
xou∇ωd2ro =

∮
xoω(Ω ∧ ro + V )iζdχ. (A 4)

Inside the subdomain, the vorticity and the stream function are connected by a
relationship ω = fβ̃,g(ψ

′). This implies u′∇ω = (−iz ∧ ∇ψ′)f′β̃,g(ψ
′)∇ψ′ = 0 and there
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remains

u∇ω = (Ω ∧ ro + V )∇ω. (A 5)

This relation expresses the link between the time derivative u∇ω = −∂ω/∂t and the
space derivative for a structure in steady motion. Combining (A 4) and (A 5), we have∫

D
xo(Ω ∧ ro + V )∇ωd2ro =

∮
xoω(Ω ∧ ro + V )iζdχ (A 6)

which is equivalent, with an integration by parts, to∫
D
ω(Vx − Ωyo)d2ro = 0 (A 7)

that is to say ΩPx = ΓVx. To prove (2.26), we need just to apply the same derivation
to the y-component.

We now consider the case of a purely translating structure (Ω = Γ = 0) and prove
the relation (2.27) between its impulse and velocity. With an integration by parts, the
impulse (2.8) can be written

Px =

∫
D
uxd

2ro +

∮
yo(u · iχ)dχ. (A 8)

Since ux = ∂ψ/∂yo, the first integral is equal to∫
D
uxd

2ro =

∫
[ψ(xo, y+(xo))− ψ(xo, y−(xo))] dxo (A 9)

where y+(xo) and y−(xo) delimit the upper and lower boundaries of the subdomain
(D) in Cartesian coordinates. Now, for a purely translating motion at velocity V , we
have ψ = Vy − B on (∂D) so that∫

D
uxd

2ro = V

∫
[y+(xo)− y−(xo)] dxo = V |D|. (A 10)

The impulse (A 8) can then be written

Px = V |D|+
∮
yo(u · iχ)dχ. (A 11)

The velocity field u outside (D) (and on the boundary) corresponds to the irrotational
flow of an incompressible fluid due to a rigid body in translational motion V .
Therefore, it must be of the form u = Vu1, where u1 is independent of V and depends
only on position in the fluid relative to the body (see Batchelor 1967, p. 129). As a
result, Px = CD|D|V where

CD = 1 +
1

|D|

∮
yo(u1 · iχ)dχ (A 12)

depends only on the domain (D).

Appendix B. Second-order variations of the free energy in the linearized
limit

In this Appendix, we show that the perturbations (3.39) and (3.45) can be associated
with an incompressible velocity field of deformation (the conditions (i) and (ii) of
§ 2.5 are satisfied) which does not change the constraints to first order. We also give
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the main steps for solving the problem (2.46) and calculate the second variations of
the free energy δ2Jd.

In the case of monopoles, the relative velocity u′ vanishes only at the centre of
the vortex (where the relative stream function is extremal). The perturbation (3.39) is
also zero at this point in such a way that λ/u′ remains finite. As a result, condition (i)
is satisfied. Condition (ii) is also satisfied, as we can see by symmetry arguments: on
each side of an axis λ = 0, the relative velocity u′ is the same, but the perturbation λ
has an opposite sign (with equal amplitude); therefore, the total integral (2.58) along
a streamline ψ′ = const. is zero. As a result, there exists a velocity field U satisfying
∇ · (ωU ) = λ and ∇ · U = 0. In fact, in the present case, we can obtain this velocity
field explicitly. Indeed, using polar coordinates, (2.50) reduces to

Ur

∂ω

∂r
= λ(r, θ) (B 1)

since ω(r) is purely axisymmetric. Then, with the aid of (3.11), we find

Ur(r, θ) = −2πa3J1(α)

Γ ′α2

Jm(kr)

J1(kr)
sin(mθ) (B 2)

and Uθ results from the incompressibility condition. We must check also that the
deformation (3.39) satisfies the first-order constraints (2.52) and (2.53). Using polar
coordinates, they can be rewritten

δL =

∫ 2π

0

ω(a)Ur(a, θ)a3dθ −
∫ a

0

∫ 2π

0

r3λ(r, θ)drdθ = 0, (B 3)

δPx =

∫ 2π

0

ω(a)Ur(a, θ)a2 sin θdθ −
∫ a

0

∫ 2π

0

r2 sin θλ(r, θ)drdθ = 0, (B 4)

δPy = −
∫ 2π

0

ω(a)Ur(a, θ)a2 cos θdθ +

∫ a

0

∫ 2π

0

r2 cos θλ(r, θ)drdθ = 0, (B 5)

and are effectively satisfied when m > 1. We can now solve the problem (2.46) to
determine the stream function Ψ . The result is

Ψ = − λ

k2
+Kmr

m sin(mθ) (B 6)

where

Km =
1

2mαam−2

(
Jm−1(α)−

2πa2

Γ ′α
Jm(α)ω(a)

)
. (B 7)

In the linearized limit, we have h′(ω) = 1/k2 and the expression (2.51) for the second
variations of the free energy can be easily calculated yielding (3.41).

In the case of a dipole (3.16), the relative velocity u′ vanishes at the centre of
each lobe and at the intersection of the separatrix and the edge of the vortex (this
corresponds to the points with coordinates r = a, θ = 0, π). The perturbation (3.45)
is also zero at these points in such a way that λ/u′ remains finite, as demanded by
condition (i). On the other hand, symmetry arguments (with respect to the y-axis)
similar to those used for the monopoles show that condition (ii) is also fulfilled.
Finally, we can verify that the deformation (3.45) satisfies the first-order constraints
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(2.52), (2.53) if we take

η = −ω(a)
2πa3

P ′α11

J4(α11)

J2(α11)
. (B 8)

The solution of problem (2.46) is therefore

Ψ = − λ

k2
11

− η

6aα11

J0(α11)r
3 cos 3θ +

J3(α11)

8a2α11

r4 sin 4θ. (B 9)

With this expression, we can perform the integrals in (2.51) and obtain (3.47).

Appendix C. Generalization of Leith’s results
In this Appendix, we generalize the results of Leith (1984) for any values of the

control parameters E, Γ , L. We then recover his MEV M and MEV C solutions as
particular cases. Finally, we point out that these solutions do not correspond to a
minimum enstrophy state when we vary the radius, but rather to an inflection point.

Following Leith, we assume that the vorticity is confined to a circular subdomain
(D) of radius a, and we seek the axisymmetric (monopole) structure which has the
minimum enstrophy:

G =

∫
1
2
ω2d2r (C 1)

with the integral constraints

Γ =

∫
ωd2r, (C 2)

E =

∫
1
2
ωψ∗d

2r − Γ 2

4π
ln a (with ψ∗(a) = 0), (C 3)

L =

∫
ωr2d2r. (C 4)

In order to have a simpler boundary condition, we have redefined the stream function
in (C 3) as ψ∗ ≡ ψ − ψ(a) (where ψ(a) = −(Γ/4π) ln a is obtained by solving the
Laplace equation outside the vortex). Now, we want G to be a minimum with respect
to variations in the vorticity field (at fixed radius) but also when we change the
radius. Following Leith, we introduce a ‘scaling’ in order to separate these two kinds
of variations. We set

s = r/a, (C 5)

ω(r) =
Γ

2πa2
ω̂(s), (C 6)

ψ∗(r) =
Γ

2π
ψ̂∗(s). (C 7)

The problem now consists in minimizing the enstrophy

Ĝ(a, ω̂) ≡ 4πG

Γ 2
=

1

a2

∫ 1

0

ω̂2sds (C 8)

(considered as a function of the normalized vorticity field ω̂ and radius a) under the
constraints ∫ 1

0

ω̂sds = 1, (C 9)
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Ê ≡ 4πE

Γ 2
=

∫ 1

0

ω̂ψ̂∗sds− ln a (with ψ̂∗(a) = 0), (C 10)

L̂ ≡ L

Γ
= a2

∫ 1

0

ω̂s3ds. (C 11)

The corresponding variational principle can be written with Lagrange multipliers
as

δĜ− λδÊ − γδL̂− αδΓ = 0. (C 12)

The variations over the vorticity field imply

ω = λψ∗ +
γΓ

4π
r2 +

αΓ

4π
(C 13)

and the variations over the radius yield

G =
Γ 2

8π
λ− ΓL

4π
γ. (C 14)

The first equation is identical to (3.1) with slightly different notation. Now, Leith
determines the optimal radius by the condition (C 14) which cancels the first variations
of the enstrophy versus radius. We can show after a tedious calculation that (C 14) is
equivalent to having ω(a) = 0. Therefore, the monopole settles its radius so as to avoid
any discontinuity at the boundary. As a result, Leith’s minimum enstrophy vortices
are characterized by a continuous vorticity and a linear relationship ω = f(ψ′). We
have reached the same conclusions in the framework of the maximum entropy bubble
but for different reasons. Accordingly, a generalization of Leith theory (for any values
of the control parameters) leads to the same equation of state as (3.24), (3.25).

At this stage, it is interesting to recover the two particular cases considered by
Leith:

(i) MEV M: when Γ → 0, the control parameter reduces to Υ ∼ 4πE/Γ 2 → +∞
and the monopole temperature determined by (3.25) is simply α = α2m. In this limit,
equations (3.24), (3.25) are equivalent to

L

Γa2
∼ − J3(α)

αJ2(α)
and Υ ∼ 3J2

3 (α)

α2J2
2 (α)

.

The radius of the MEV M monopole is therefore

a =

(
3L2

4πE

)1/4

(C 15)

as found by Leith.
(ii) MEV C: when Ω = 0 (i.e the constraint on the angular momentum is released),

the formula (3.12) with Γ ′ = Γ , combined with (3.24) yields α = α0m. We find with
the equation of state (3.25) that these solutions correspond to control parameters:

Υ = 1
2

+ 1
2

ln

(
1− 4

α2
0m

)
. (C 16)

The radii of the MEV C monopoles, determined by (3.24), are

L

Γa2
= 1− 4

α2
0m

(C 17)
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or equivalently:

E =
Γ 2

4π

(
1
2
− ln a

)
(C 18)

without reference to the angular momentum.
However, these solutions only cancel the first variations of the enstrophy. Their

stability will depend on the second-order variations. For a given radius, the monopole
with zero circulation (MEV M) is stable under axisymmetric perturbations but not
under quadripolar perturbations (since α2m > α11) as discussed in § 3.4 (our conditions
of stability apply also to minimum-enstrophy vortices, as discussed at the end of § 4).
For the same reason, only the MEV C with m = 1 (corresponding to Υ ' −0.08828)
is stable. Therefore, non-axisymmetric perturbations (which Leith did not consider)
are more destabilizing that axisymmetric ones and must be taken into account in the
stability problem.

Leith examined also the second variations of the enstrophy with respect to radius
changes and showed that they were positive. In order to have a true minimum, they
must in fact be strictly positive. Now, the enstrophy of a linear monopole with radius
a is

G =
Γ 2

4πa2

{
2 + α2H

(
1 +

Λ2

3

J1(α)

J3(α)

)}
(C 19)

with the notation of § 3.2. According to (3.13)–(3.15), the normalized enstrophy
(4πL/Γ 3)G is a function of Υ and L/Γa2 only. In particular, for a given control
parameter Υ , we can plot the enstrophy as a function of a|Γ/L|1/2 (see figure 7). We
then observe that the enstrophy is always decreasing and that the monopole with
a continuous vorticity corresponds to an inflection point and not to an enstrophy
minimum. In contrast, our criterion of boundary deformation indicates that this
particular monopole is stable.
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